Why Network Security needs to have Big Data Analytics? | By Arslan

Why Network Security needs to have Big Data Analytics?

In a nutshell, network security protects the integrity and usability of any organization’s vast network and data connection. In a broader sense, it consists of certain practices and policies that monitor and prevent information misuse, unauthorized access, and modification of the existing information in any computer network. 

Network security is concerned with shielding computer networks from cyberattacks. So, how does big data analytics come into the picture? Before we jump into the details, let us start with the basics. 

What is Big Data Analytics? 

Big data analytics is the strategy of examining a massive amount of data to identify correlations, hidden patterns, and other useful insights. With modern technology, it has become extremely convenient to analyze tons of unnecessary data to extract information that could answer important questions. 

Big data has existed for a very long time. Even before the term ‘big data analytics’ was coined, people were still using basic analytics practices to uncover future trends and useful insights. Well, times have changed and basic analytics has transformed into big data analytics. 

Generally, big data analytics is used by organizations to browse through and identify the latest opportunities. This, in turn, leads to efficient operations, smart business moves, happier customers, and higher profits. 

Big Data Analytics and Network Security: What is the Connection? 

Big data analytics is concerned with extracting useful information from a bulk of available data and network security is about creating strategies that could protect an organization’s computer networks. So, where is the link between these two? 

The era of connected devices has created a larger ground for cybercriminals to carry out exploitive measures. This has created a need to have a system in place that could track or detect any attack before it has even taken place. The evolution of massive data storage facilities has introduced big data which goes through unprecedented amounts of useful information at a high speed. 

Analytics has always been a crucial factor in cyber resilience. The cyberattacks are becoming more sophisticated and advanced and the attackers only need to make one successful attempt to get inside an organization’s networks. This compels the companies to rethink their network security concepts. To protect one’s assets, one must move beyond prevention towards the ‘Prevent, Detect, and Respond’ paradigm. 

At the center of this problem is the need for improved detection. This is where big data analytics meets network security. With the help of enhanced detection capabilities, the networks are able to pinpoint changes in the use pattern.

In response to any detected changes, the networks can perform quick complex analysis and execute complex correlations through various data sources that range from application logs to network events, servers, and users’ activities.  

This approach requires advanced analytics and the ability to perform real-time analysis on tons of current or historical data. Combining analytics’ current state with network security allows organizations to improve their cyber strength. 

By utilizing big data gathered from computers, networks, cloud systems, and sensors, cybersecurity analysts along with intrusion detection and prevention areas can uncover important information quickly. Discovering such information will allow organizations to identify vulnerabilities, predict cyberattacks, and develop calculated network security solutions in response. 

Combating Networks’ Cyber Threats through Big Data Analytics 

Traditionally, the network security departments relied on two basic analytic techniques to identify any security anomaly; correlation rules and network vulnerabilities. With the first technique, the organizations defined various rules that specified a chain of events which could detect any anomaly. Such anomalies that presented vulnerability, security threat, or any security incident were dealt with immediately. 

The second strategy involved risk assessment and network vulnerabilities. This strategy worked by scanning the networks to identify or pick up attack patterns or security loopholes such as insecure protocol and/or open ports. 

Although both these methods were good at detecting security anomalies, they suffered from two major drawbacks, i.e. false positives and unexpected events. Since these networks had predefined rules, the chances of false positives were always on the horizon. Further, these predefined rules were not made to handle or deal with any new type of threats. This left the existing network security incompetent in terms of dealing with new or cunning attacks. 

Big data analytics helps organizations by addressing hidden risks and insider threats; the latter of which is difficult is detect since the users have access to all corporate systems. With the help of big data analytics, organizations can:

  • Detect and deal with anomalies in device or personnel behaviors. This can be achieved by producing a model persona of users, devices or a group of networking devices. This will allow organizations to detect and deal with such behavior that is not according to their predefined set of rules. 
  • Identify inconsistencies in networks. By creating a model of how network traffic should behave under normal circumstances, the security systems will be able to pinpoint unusual behavior during any time. 
  • With the help of machine learning, big data analysis can learn from previous intrusions to hinder any such attacks from taking place in the future. 
  • Big data analytics combined with machine learning algorithms can perform deep learning to pick out threats of any malware attack. It intelligently analyzes the binaries transferred from the download or emails and tries to figure the nature of the binaries even if they were not flagged as a potential threat. This is done in a bid to understand if it is a malicious program or a benign one.

Conclusion 

Big data analytics provide industries with the hope that their processes and businesses can be secured in the event of any breach. By incorporating big data analytics, organizations can improve their management techniques and work on their threat-detection mechanisms to secure their basis. 

As much as the big data analytics is useful, it can easily become ineffective if it is poorly utilized. Big data analytics security solutions, backed with machine learning and artificial intelligence, can give hope to companies that their networks can be kept safe in the event of unauthorized access. 

Overall, big data analytics represent massive opportunities for organizations that go beyond basic business intelligence. It offers a chance to fortify the network’s defenses. However, solely relying on big data analytics will not produce positive results. Instead, the organizations must learn to share the risks and responsibilities associated with the protection of data. 

Apart from the network security, big data has many uses one of which is concerned with app development. So, if you want advanced mobile apps that provide memorable moments and great user experience, you need to look for app development services that specialize in this branch. 

Author Bio: 

Arslan is an electrical engineer with a passion for writing, designing and anything tech-related. His educational background in the technical field has given him the edge to write on many topics. He occasionally writes blog articles for  Dynamologic Solutions, a mobile app development company

October 25, 2019

Leave a Reply

avatar

This site uses Akismet to reduce spam. Learn how your comment data is processed.

  Subscribe  
Notify of
© HAKIN9 MEDIA SP. Z O.O. SP. K. 2013